Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Funct Plant Biol ; 512024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560925

RESUMO

Continuous increasing leaf photosynthesis may enhance plant yield. As an evolutionary property, plants use less photosynthetic capacity than is theoretically possible. Plant nanobionics is a bioengineering field that improves plant functions using nanoparticles. We applied orange carbon dots (o-CDs) onto the foliage of green beans (Phaseolus vulgaris ) grown in hydroponics to improve their photosynthetic performance and CO2 assimilation. Photosynthesis parameters, photosynthetic pigments content, total phenolic content (TPC) and antioxidative activity (TAA) were measured. Results show that photosynthetic pigments remained unchanged, while photosynthesis was improved. Both o-CDs concentrations decreased TPC and TAA. The light response curve showed higher CO2 assimilation at both o-CDs concentrations, particularly at lower light intensity. Correlation analysis confirmed increased CO2 binding and assimilation at 1mg L-1 . This study demonstrated the potential of using o-CDs as a safe biostimulator through photosynthesis increase and CO2 assimilation without toxic effects on plants. This may stimulate yield increase that paves the way for their agricultural application.


Assuntos
Dióxido de Carbono , Phaseolus , Dióxido de Carbono/metabolismo , Phaseolus/metabolismo , Carbono , Fotossíntese , Luz , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA